Viruses in the ICU: Are they prime time?

Andrew Thompson, PharmD, BCPS

NTX Division Infectious Disease Pharmacy Director

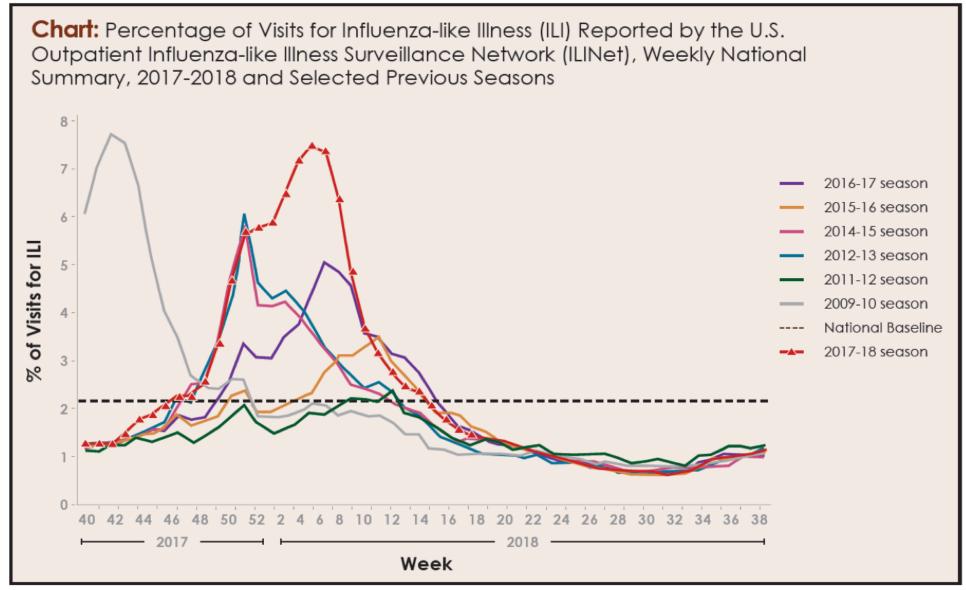
Disclosures

• I have no financial interests or other relationship with commercial concerns related directly or indirectly to this presentation.

Learning Objectives

- Identify and evaluate patients at risk for development of a viral infection
- Review the pathogenic viruses seen in the critically ill population
 - Influenza
 - CMV
 - RSV

Influenza


Influenza – 100th anniversary of the 1918 pandemic

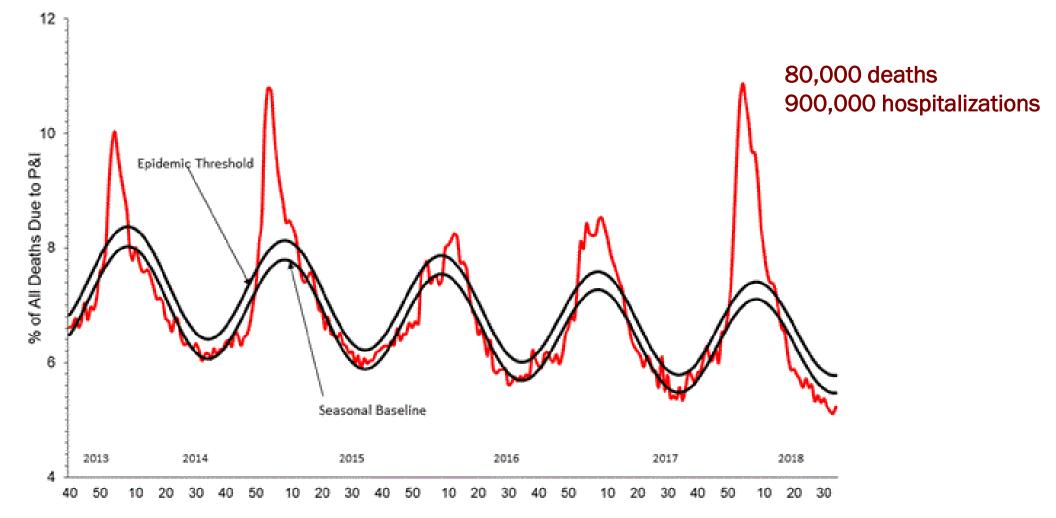
- ~500 million people became infected
 - 1/3 of the world's population
- At least 50 million deaths worldwide
 - ~675,000 in the United States
- Life expectancy fell by about 12 years
 - 36 years for men and 42 years for women
- Disproportionately affected younger adults

2017-2018 Seasonal Flu

😔 Medical City Healthcare.

Centers for Disease Control and Prevention. Summary of the 2017-2018 Influenza Season. https://www.cdc.gov/flu/about/season/flu-season-2017-2018.htm

2017-2018 Seasonal Flu


H3N2 predominated

Vaccine Effectiveness

- Overall 36%
- H3N2 25%
- •H1N1 67%
- Flu B 42%

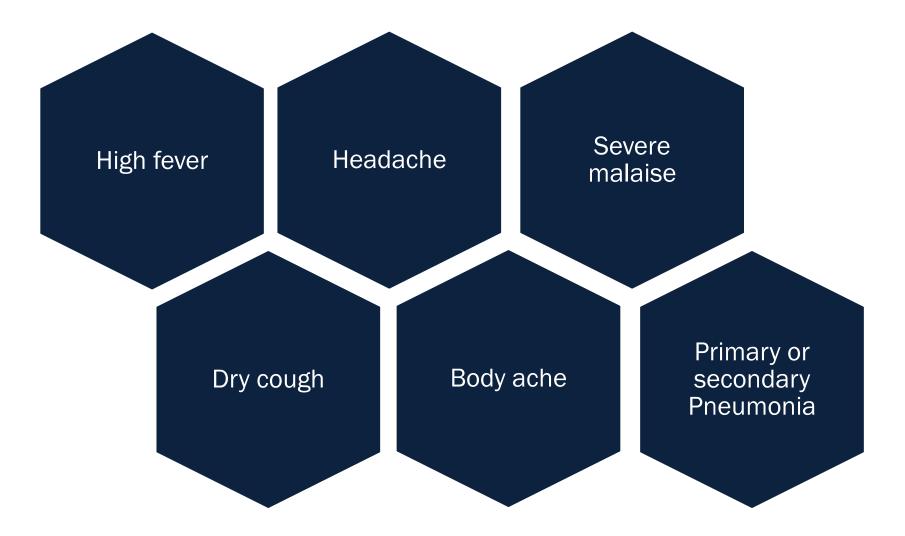
Pneumonia and Influenza Mortality from the National Center for Health Statistics Mortality Surveillance System Data through the week ending August 25, 2018, as of September 13, 2018

MMWR Week

• Medical City Healthcare

Centers for Disease Control and Prevention. Summary of the 2017-2018 Influenza Season. https://www.cdc.gov/flu/about/season/flu-season-2017-2018.htm

8



Influenza

- Acute respiratory illness, caused by influenza A, B, and C viruses
- Occurs in local outbreaks or seasonal epidemics
- Short incubation period
- Presentation ranges from asymptomatic to fulminant
- Influenza A
 - Host Birds, swine, humans
 - Evolves rapidly, more virulent
 - Classified into subclasses based on hemagglutinin and neuraminidase antigens
- Influenza B
 - Hosts Humans
 - Less genetically diverse

• Medical City Healthcare

Influenza Clinical Presentation

Hedical City Healthcare.

Diagnosis and Interpretation of Testing

- PCR Based Methods
- Rapid, non-PCR methods falsenegatives

Influenza negative result

Cannot rule out infection, especially if not using high sensitivity test or >4 days after illness onset Use C/S, history, exam and local influenza activity to decide if treatment is indicated

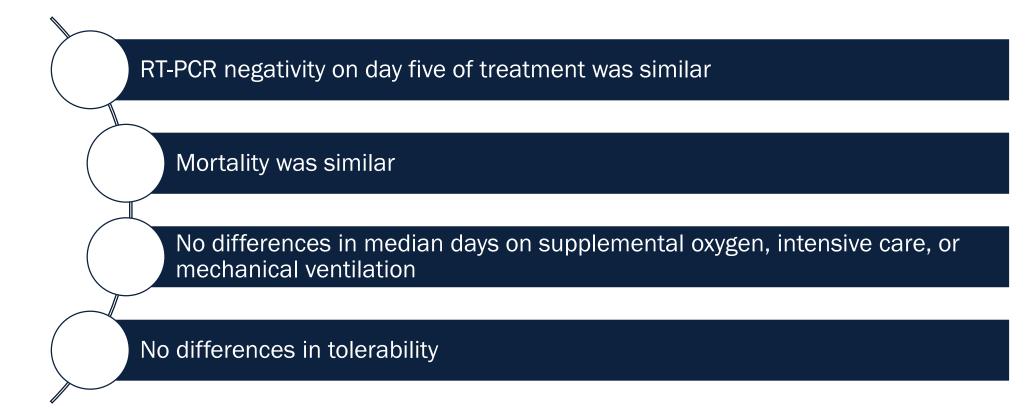
*consider additional influenza testing if indicated and testing for other pathogens

11

Antiviral Therapy

Antiviral Agent	Dose	Comments
Oseltamivir (Tamiflu®)	75mg PO BID x5 days	 Initiate as promptly as possible
	150mg PO BID	 Longer duration and high- dose can be considered in certain patients
Zanamivir (Relenza®)	10mg INHALED BID x5 days	 Not recommended for severe disease
Peramivir (Rapivab®)	600mg IV as a single dose	Uncomplicated
	600mg IV daily x5 days	 Hospitalized patients If clinically unstable on day 4, continue for 10 days total

Hedical City Healthcare.


Centers for Disease Control and Prevention. Influenza Antiviral Medications: Summary for Clinicians. https://www.cdc.gov/flu/professionals/antivirals/summary-clinicians.htm

High-dose Oseltamivir

- Optimal dose and duration unknown for severe cases
- Doubling the dose of oseltamivir has been suggested
 - Severely ill patients with H5N1 avian influenza
 - Certain severely ill patients (eg, immunocompromised hosts) during the 2009 to 2010 H1N1 influenza pandemic

High-dose Oseltamivir

- Randomized trial of hospitalized patients with severe influenza
 - 165 and 161 patients randomized to double or standard dose oseltamivir

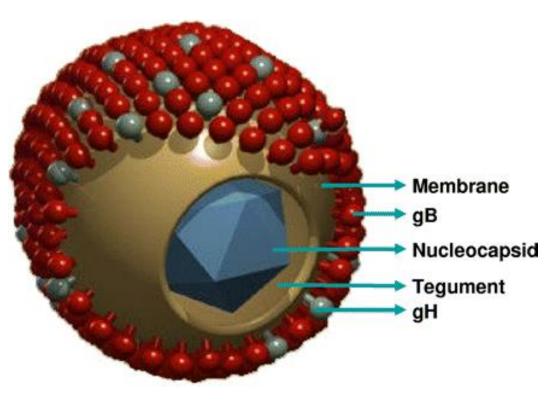
Hedical City Healthcare.

Extended Duration Antivirals

- Optimal duration for severe cases uncertain
- Clinical judgment and virologic testing of lower respiratory tract specimens by RT-PCR should be used to help guide decisions to treat longer for severe and prolonged illness or immunosuppressed patients
- Careful attention to ventilator and fluid management and to the prevention and treatment of secondary bacterial pneumonia
 - S. pneumoniae, S. aureus (including MRSA), and S. pyogenes

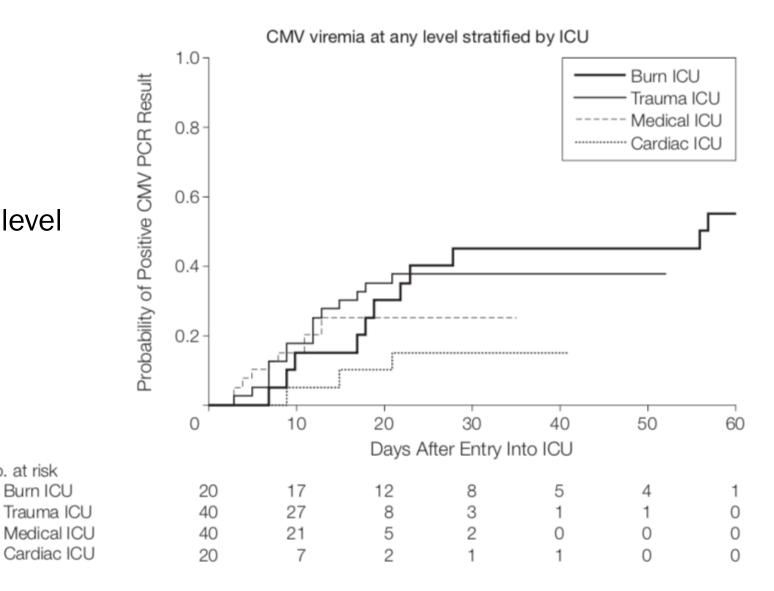
Prevention

- 2017-2018 Influenza Vaccine
 - 38.5% of adults vaccinated last season
 - 58% of children vaccinated
- Everyone \geq 6 months of age should get a flu vaccine every season
- Vaccines include:
 - Inactivated influenza vaccine
 - Recombinant influenza vaccine
 - Live attenuated influenza vaccine
- No vaccine preference given



CMV

- Cytomegalovirus (CMV) is member of the herpes virus family
- Infects people of all ages most asymptomatic
 - 1/3 children are already infected by age 5
 - 1/2 infected by the age of 40
- Establishes latent phase mainly within leukocytes
- Past exposure diagnosed with a positive anti-CMV IgG serology



CMV Reaction in ICU Patients

- Reactivation of CMV occurs frequently in critically ill immunocompetent patients
- Cumulative incidence at any level was 33%

No. at risk

Associated with prolonged hospitalization or death

Medical City Healthcare

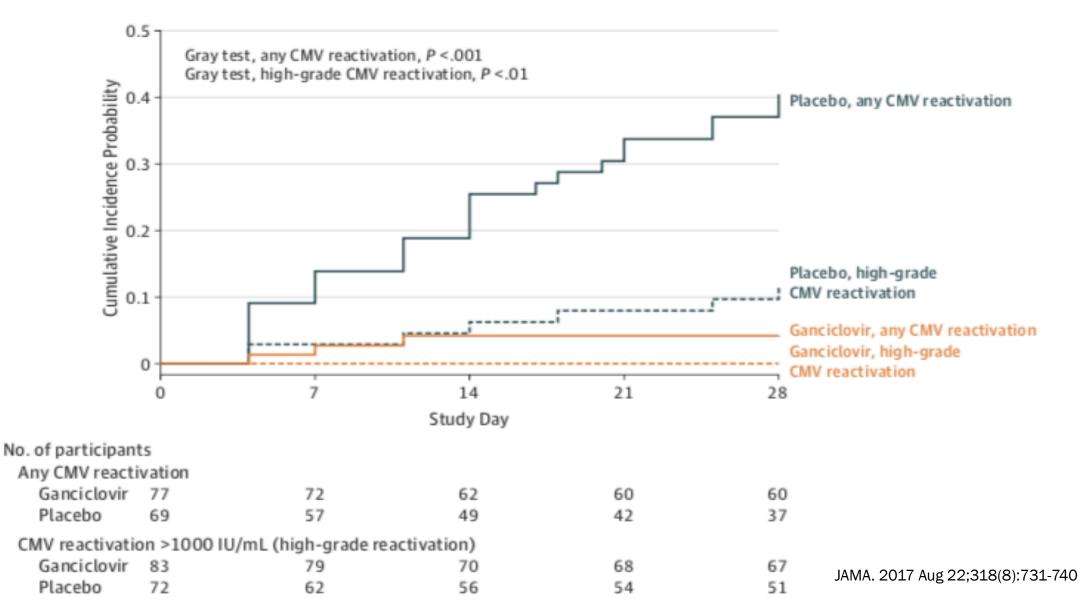
CMV Reactivation

Potential Mechanisms of Injury				
Direct	Excessive	Alterations		
cytopathic	immune	in immune		
effect	response	defense		

• Medical City Healthcare.

Associated Effects of CMV on Outcomes

- Prolonged mechanical ventilation
- Prolonged duration of ICU stay
- Organ system failure
- Nosocomial infections
- Higher mortality rates



Prevention of CMV Reaction

- A Randomized Double-Blind Placebo-Controlled Trial of Ganciclovir/Valganciclovir for Prevention of Cytomegalovirus Reactivation in Acute Injury of the Lung and Respiratory Failure (The GRAIL Study)
- 160 non-immunocompromised patients with sepsis or trauma respiratory failure
- Experimental Arm: 5mg/kg IV twice daily for 5 days, then followed by either IV ganciclovir or oral valganciclovir once daily until hospital discharge
- Primary endpoint: IL-6 levels from day 1-14

Cumulative Incidence of Any CMV Reactivation and High-Grade CMV Reactivation

23

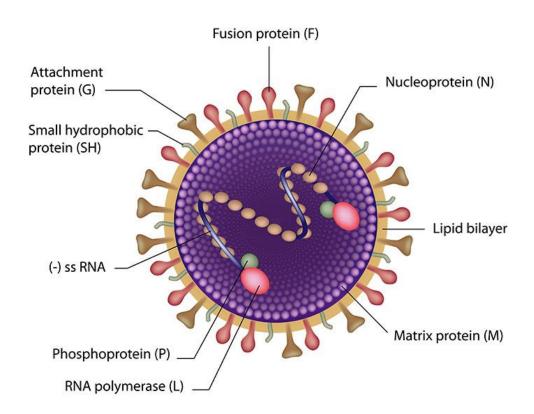
Effect of Ganciclovir on IL-6 Levels Among CMV + Critically III Adults

	Intention-to-Treat Group (n = 156)			Sepsis Subgroup (n = 137)				
	Placebo Group (n = 72)	Ganciclovir Group (n = 84)	Absolute Difference (95% CI)	P Value	Placebo Group (n = 66)	Ganciclovir Group (n = 71)	Absolute Difference (95% CI)	P Value
Primary Outcome at Day 14								
Difference in plasma IL-6 level, mean, log ₁₀ units	-0.79 (-2.14 to 0.56)	-0.79 (2.06 to 0.48)	0 (-0.3 to 0.2)	>.99	-0.88 (-2.23 to 0.47)	-0.81 (-2.20 to 0.58)	0.1 (-0.2 to 0.2)	.83
Secondary Outcomes at Day 28								
Cumulative incidence of any plasma CMV reactivation, No. (%)	28 (39)	10 (12)	-27 (-40 to -14)	<.001	26 (39)	10 (14)	-25 (-40 to -11)	<.001
Mechanical ventilation duration, median (IQR), d ^a	6 (3 to 12)	5 (3 to 9)	-1 (-3 to -1) ^b	.16	6 (3 to 11)	5 (3 to 8)	-1 (-4 to 0)	.06
Ventilator-free duration, median (IQR), d ^a	20 (8 to 24)	23 (16 to 25)	3 (0 to 6)	.05	20 (9 to 24)	23 (16 to 25)	3 (0 to 4)	.03
ICU length of stay, median (IQR), d ^a	8 (5 to 15)	8 (4 to 14)	0 (-4 to 2)	.76	8 (5 to 14)	7 (4 to 12)	-1 (-4 to 1) ^b	.36
Hospital length of stay, median (IQR), d ^a	13 (8 to 23)	14 (8 to 22)	1 (-1 to 1)	.92	13 (8 to 22)	13 (8 to 20)	0 (-1 to 1)	.76
Secondary bacteremia or fungemia, No. (%)	11 (15)	13 (15)	0 (-10 to 10)	.97	9 (14)	10 (14)	0 (-10 to 10)	.96
Mortality, No. (%)	11 (15)	10 (12)	-3 (-14 to 7)	.54	10 (15)	9 (13)	-2 (-14 to 9)	.68
Composite end point of mortality and >7 d of mechanical ventilation or >50% increase in IL-6 level, No. (%)	49 (68)	42 (50)	-18 (-33 to -3)	.02	44 (67)	34 (48)	-19 (-35 to -3)	.04

• Medical City Healthcare

Effect of Ganciclovir on IL-6 Levels Among CMV + Critically III Adults

- Among CMV-seropositive adults with critical illness due to sepsis or trauma, ganciclovir did not reduce IL-6 levels
- Published literature and the current study do not support routine clinical use of ganciclovir as a prophylactic agent in patients with sepsis


RSV

- Respiratory syncytial virus (RSV) is known to be an important cause of lower respiratory tract infections in infants and young children
- Impact in adults, often underappreciated
 - Infects 3%–10% of adults annually
 - 5%–15% of community-acquired pneumonia
 - 9%–10% of hospital admissions for acute cardiorespiratory diseases
- Little is known about the clinical manifestations, complications, and outcomes of severe RSV infections in adults
 - Exception of severely immunocompromised patients

RSV

- Enveloped, non-segmented, singlestranded RNA virus
- Attachment (G) and fusion (F) proteins account for viral binding and penetration
- Classified as either A or B subgroups
 based on G protein
- F and G proteins are common targets for antivirals and vaccines

Respiratory Syncytial Virus

RSV

- Very common respiratory virus in children <2-3 years of age
- Second most common viral pathogen in adults >65 years after influenza
- Most infection cause mild symptoms, but can be a common cause of CAP and COPD exacerbations in older adults
- High-risk groups
 - Elderly
 - Chronic cardiopulmonary diseases
 - Immunosuppressed
- Use highly sensitive rRT-PCR assays for detection

• Medical City Healthcare

Epidemiology

Treatment

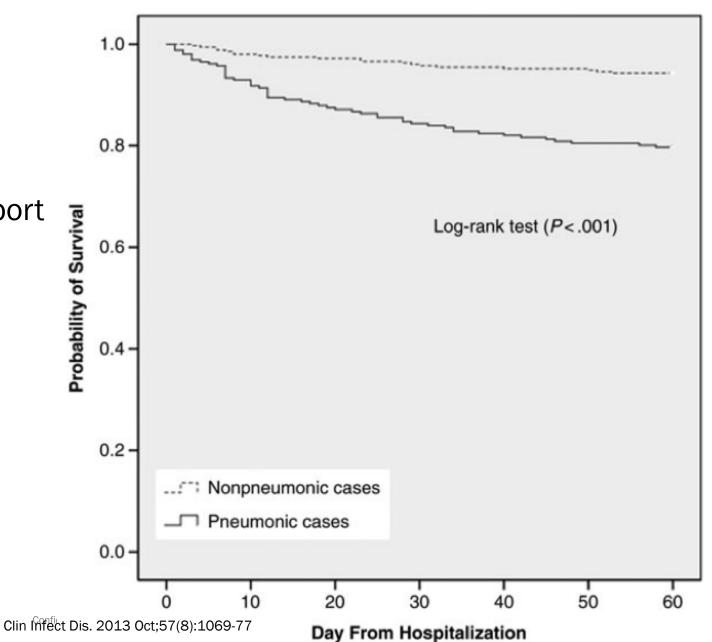
• Treatment in adults is limited to supportive care

- Bronchodilators
- Corticosteroids
- Supplemental oxygen
- HCT patients may benefit from antiviral and immunotherapy
- Overall research in this area has been underappreciated
 - Insensitive point-of-care diagnostics
 - Lack of a distinct clinical syndrome
 - Broad epidemic curve overlapping influenza

• Medical City Healthcare

Baseline Characteristics, Presenting Symptoms, Complications, and Outcomes of 607 Adults Hospitalized With RSV Infection, 2009–2011

Variable	RSV (N = 607)	Influenza (N = 547)	<i>P</i> Value
Age, y, mean (SD)	75.1 (16.4)	74.7 (16.6)	.650
Male sex	48.6	49.5	.749
Resident of long-term care facility	32.9	30.5	.378
Comorbidity, major systemic (except chronic lung diseases) ^a	74.0	65.8	.003
Chronic lung diseases ^a	35.6	24.1	<.001
Symptom onset to admission, d, mean (SD)	2.6 (2.2)	2.0 (1.7)	<.001
Fever >37.5°C	75.0	94.2	<.001
Cough	87.5	85.7	.513
Sputum production	81.2	72.5	.010
Wheezy breathing and dyspnea	68.9	53.2	<.001
Sore throat	11.8	14.3	.364
Runny nose	25.6	30.2	.214
Pneumonia	42.3	36.7	.006
Lower respiratory complications ^b	71.9	55.6	<.001
Cardiovascular complications ^b	14.3	13.3	.653
Complications, any ^b	80.4	72.8	.002
Bacterial infection, overall ^c	14.8	14.3	.790
Bacterial infection, at presentation ^c	12.5	9.1	.066
Supplemental oxygen therapy	67.9	59.0	.002
Ventilation, noninvasive or invasive	11.1	6.2	.003
30-day mortality	9.1	8.0	.538
60-day mortality	11.9	8.8	.086
Time to death, d, median (IQR)	13 (7–29)	7 (3–13)	.001
Extended care in subacute hospitals	25.2	19.7	.027
Duration of hospitalization for survivors, d, median (IQR)	7 (5–14)	6 (5–11)	.238


Hedical City Healthcare.

Variables Associated With Death in Hospitalized RSV Patients

- Advanced age (>75 years)
- Pneumonia
- Requirement of ventilator support
- Bacterial superinfection

Medical City Healthcare

- Serum urea concentrations
- Total WBC count

33

Explanatory Variables Associated With Duration of Hospitalization Among Survivors (n = 535) as Shown in the Final Cox Proportional Hazards Mode

•	Systemic corticosteroids were given to 38.9% of patients to treat acute airway diseases	Variables Associated With Duration of Hospitalization	Adjusted Hazard Ratio (95% Confidence Interval)	<i>P</i> Value
		Advanced age (>75 y)	0.74 (.62–.89)	.001
		Comorbidity, major systemic	0.77 (.64–.94)	.010
		Requirement of ventilatory support	0.39 (.28–.54)	<.001
		Use of systemic corticosteroids	0.76 (.63–.91)	.002

RSV Takeaways and Future Direction

- RSV can cause severe lower respiratory complications in older adults
 - Respiratory failure
 - Prolonged hospitalization
 - High mortality similar to influenza
- Corticosteroids did not seem to improve clinical outcomes
- The unmet need for effective antiviral therapy and vaccination against RSV

Summary

- Influenza vaccine should be offered to patients ≥ 6 months of age every season
- High-dose oseltamivir may not provide additional benefit
- Early administration of oseltamivir has shown to shorten duration of hospitalization
- Optimal duration is uncertain for severe or complicated influenza
- CMV reactivation is associated with worse outcomes
- Routine use of ganciclovir for CMV prophylaxis in patients with sepsis is not recommended
- RSV can cause severe lower respiratory complications in older adults
- Corticosteroids did not seem to improve clinical outcomes
- Unmet need for effective antiviral therapy and vaccination against RSV

Hedical City Healthcare.

Learning Assessment Question #1

Influenza virus infection can lead to bacterial superinfection and pneumonia secondary to which of the following organisms.

A. Streptococcus pneumoniae

B. Streptococcus pyogenes

C. Staphylococcus aureus

D. All of the above

• Medical City Healthcare

Learning Assessment Question #2

CMV infection that occurs in immunocompetent adults with critical illness most commonly occurs due to primary infection.

A. True

B. False

