Society of Critical Care Medicine Texas Chapter 7th Annual Symposium "Less is More in Critical Care"

October 20, 2018

Catecholamine-Sparing Strategies

Tamara Reiter, Pharm.D., BCCCP Clinical Pharmacy Specialist—Critical Care PGY2 Critical Care Residency Program Director Methodist Dallas Medical Center Dallas, TX

Disclosures

La Jolla Pharmaceutical Company
Advisory Board meeting attendance

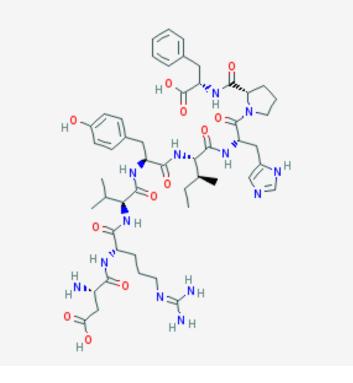
Objectives

- Discuss the utilization of angiotensin II in refractory vasodilatory shock
- Examine the evolving evidence for novel V1a receptor agonist therapies in refractory septic shock

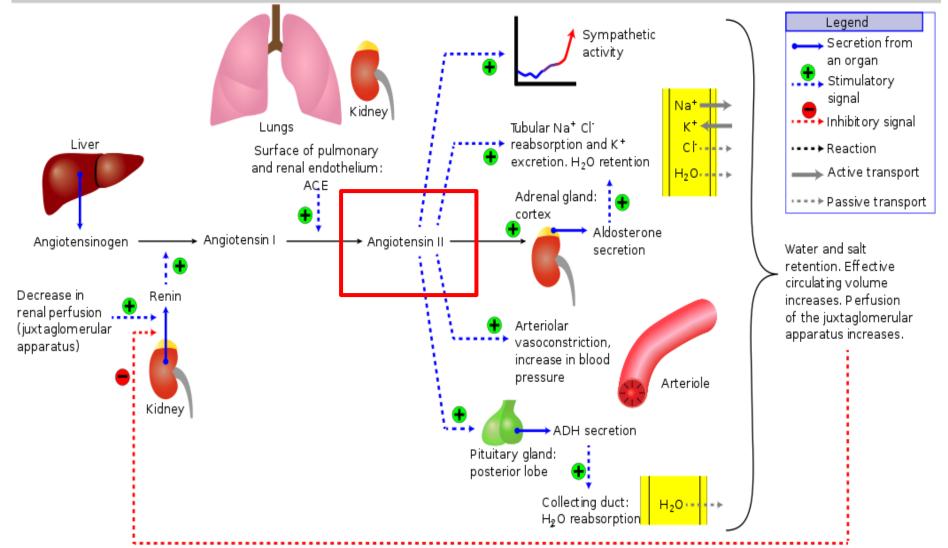
Overview

Introduction

- Review catecholamine vasopressors
- Rationale for catecholamine-sparing strategies
- Angiotensin II
- V1a Receptor Agonists
- Conclusions


Vasopressors

- First isolated ~ 1900
- Catecholamines
 - Norepinephrine
 - Epinephrine
 - Dopamine
- Non-catecholamines
 - Phenylephrine
 - Vasopressin/terlipressin
 - Angiotensin II (AT2)


Adverse Effects of Catecholamines

- Arrhythmias
- Ischemia
- Increased myocardial O2 demand
- Hyperglycemia
- Decreased cardiac output
- Inflammation
- Immunosuppression
- Increased mortality??

Angiotensin II

Renin-angiotensin-aldosterone system

By Soupvector - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=66583851

Angiotensin II

- Has been used in humans since 1940s for a variety of disease states
- Recent review of ~1100 studies in > 31,000 patients
 - 34 studies demonstrated dose-response relationship on BP (only 2 studies in hypotensive patients)
 - Cirrhosis w/ ascites→less sensitive to pressor effects; natriuresis and diuresis
 - Pregnancy \rightarrow progressive resistance to pressor effects
- Safety
 - Potential to exacerbate LV failure in acute CHF
 - Potential to cause asthma exacerbation

ATHOS-3

- Phase III trial evaluating AT2 for severe vasodilatory shock
 - Randomized, double-blind, multicenter, placebocontrolled; May 2015-January 2017
 - N = 321
 - Purpose: to determine effectiveness of AT2 for vasodilatory shock resistant to high-dose vasopressors
 - Primary Outcome: MAP response 3 hours after start of infusion

MAP = mean arterial pressure

Khanna, A, et al. Angiotensin II for the Treatment of Vasodilatory Shock. NEJM. 2017 May 21.

ATHOS-3 Results

Outcome	AT2 N=163 (%)	Placebo <i>N=158 (%)</i>	P-value
MAP response at hour 3	114* (70)	37 (23)	< 0.001
Mean change in SOFA score	1.05 <u>+</u> 5.5	1.04 <u>+</u> 5.34	0.49
7-day all cause mortality	47 (29)	55 (35)	0.22
28-day all cause mortality	75 (46)	85 (54)	0.12
Any serious adverse event	99 (61)	106 (67)	-

*79/114 (69%) were "super-responders"

Khanna, A, et al. Angiotensin II for the Treatment of Vasodilatory Shock. NEJM. 2017 May 21.

McCurdy, MT, et al. Association of Angiotensin II Dose with All-Cause Mortality in Patients with Vasodilatory Shock.. https://isicem.esn.eu/posters_listing/see_poster/312/2018/jury

Subgroup Analyses

Population (AT2 = 163; placebo = 158)	N (AT2 vs. placebo)	Day 28 Mortality (%) (AT2 vs. placebo)	P-value
"Super-responders"	79 vs. 84 N/A (placebo)	32.9 vs. 58.6 53.9	0.0007
APACHE II > 30	58 vs. 65	51.8 vs. 70.8	0.037
AKI on RRT	45 vs. 60	53 vs. 30	0.012
MAP < 65	52 vs. 50	54.2 vs. 70.4	0.10
ARDS*	122 vs. 121	48 vs. 57	NS
$AT1/AT2 \ge 1.63^{**}$ (AT2 = 142; placebo = 139)	68 vs. 72	HR 0.64	0.047

*Defined by baseline PaO2/FiO2 < 300 **Signifies relatively low AT2 state

McCurdy, MT, et al. Association of Angiotensin II Dose with All-Cause Mortality in Patients with Vasodilatory Shock. https://isicem.esn.eu/posters_listing/see_poster/312/2018/jury Szerlip, H, et al. Effect on Disease Severity on Survival in Patients Receiving Angiotensin II for Vasosdilatory Shock. Crit Care Med; 46(1)S

Busse, LW, et al. Outcomes in Patients with Acute Respiratory Distress Syndrome Receiving Angiotensin II for Vasodilatory Shock. https://isicem.esn.eu/posters_listing/see_poster/65/2018/jury Tumlin, JA, et al. Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit Care Med; 46 (6): 949-57.

Wunderink, RG, et al. Baseline angiotensin levels and ACE effects in patients with vasodilatory shock treated with angiotensin II. Intensive Care Medicine Experimental 2017, 5(Suppl 2): 0703

Adverse Reactions

Adverse Event	AT2 (N=163)	Placebo (N=158)	
Any	142	145	
Any leading to discontinuation	23	34	
Atrial fibrillation	5	5	
Peripheral ischemia	7	4	
Thrombotic events	21	8	
Fungal infection	10	2	
Delirium	9	1	
Acidosis	9	1	

Bauer, SB, et al. Safe Use of Vasopressin and Angiotensin II for Patients with Circulatory Shock. Pharmacotherapy 2018;38(8):851-61. Khanna, A, et al. Angiotensin II for the Treatment of Vasodilatory Shock. NEJM. 2017 May 21.

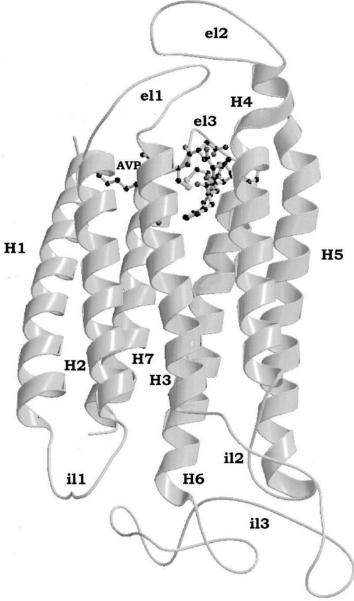
ATHOS-3 Critiques

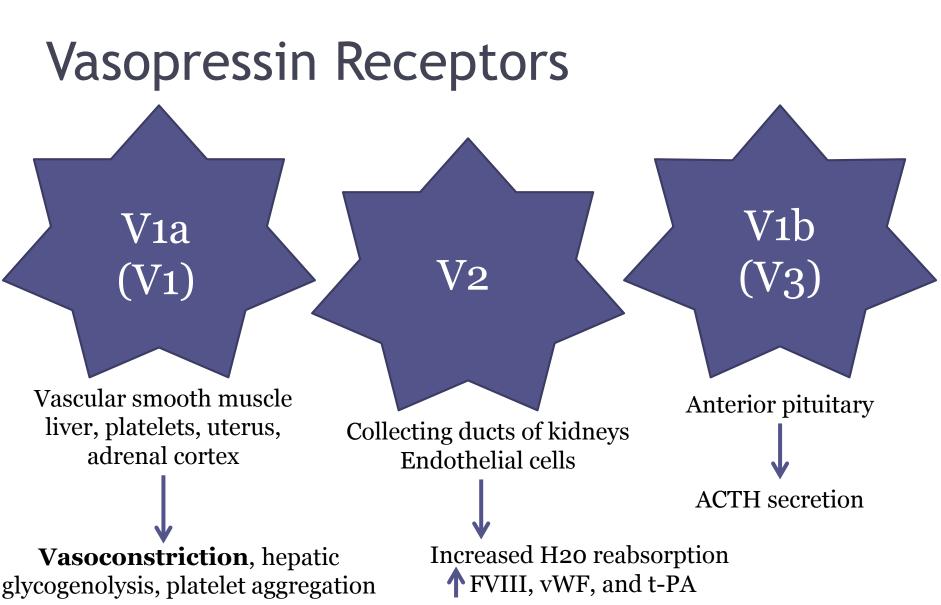
- Manufacturer involved in all aspects of trial
- Dosing protocol
- No details provided regarding other care provided (~90% septic shock)
- Inclusion criteria
 - 25 mL/kg fluid resuscitation
 - ScvO2 & CVP or CI used to define high-output shock
- Goal MAP 75 mmHg
- No clinically meaningful short-term outcomes reported
 - Lactate clearance, urine output

AT2-The Good, The Bad, and The Ugly

• Good

- Effective vasopressor
- Catecholamine-sparing
- May provide benefit in certain populations
- Bad
 - Very limited published data in septic shock
 - Concerning ADEs
- Ugly
 - AWP \$1800 per vial


Unanswered Questions


- Is the catecholamine-sparing effect enough?
- What is the effect on short-term outcomes?
- Are there long-term adverse effects?
- Who are the ideal patients?
- What is the ideal starting dose?

Conclusions

- AT2 is a potentially beneficial addition to the treatment of septic shock
- More data is needed on short-term clinical outcomes and long-term adverse effects

V1a Receptor Agonists

vWF = von Willebrand factor; t-PA = tissue plasminogen activator

Petersen, MB. The Effect of Vasopressin and Related Compounds at V1a and V2 Receptors in Animal Models Relevant to Human Disease. Basic & Clinical Pharmacology & Toxicology 2006, 99, 96-103.

Vasopressin in Septic Shock

- Initial spike followed by rapid decline of vasopressin levels
- Increases cortisol levels
- Coronary/pulmonary vasodilation via NO production
- Infusion effects: decreased norepinephrine doses, increased urine output/CrCl, and decreased cardiac output

NO = nitric oxide; CrCl = creatinine clearance

Holmes, CL, et al. Physiology of Vasopressin Relevant to Management of Septic Shock. CHEST 2001; 120:989-1002.

Russell, JA. Bench-to-bedside review: Vasopressin in the management of Septic Shock. Critical Care 2011, 15:226 (http://ccforum.com/content/15/4/226)

VASST

- Evaluated vasopressin (AVP) versus norepinephrine (NE) effect on 28 day mortality in septic shock
 - Multicenter, randomized, double-blind; N = 778
 - Stratified by baseline NE dose
 - No difference in primary outcome (35.4% vs. 39.3%)
 - Secondary outcomes: No difference in 90 day mortality, any organ dysfunction subgroup, or LOS
 - No difference in adverse effects

Conclusions

- AVP significantly decreased NE doses at day 4 (p < 0.001)
- AVP MAY improve mortality in patients with less severe shock

LOS=length of stay

Russell, JA, et al. Vasopressin versus Norepinephrine Infusion in Patients with Septic Shock. NEJM 2008; 358(9):877-87.

Russell, JA. Bench-to-bedside review: Vasopressin in the management of Septic Shock. Critical Care 2011, 15:226 (http://ccforum.com/content/15/4/226

Terlipressin

- Synthetic analogue of lysine vasopressin
- 2x higher affinity for V1a receptor vs. V2 receptor
- Longer half-life (50 min vs. 6 min)
- Bolus and continuous infusion studied
- Meta-analyses show conflicting effects on mortality
- Therapeutic and adverse effects similar to vasopressin
- Not available in US

Terlipressin vs. NE for Septic Shock

- Multicenter, randomized, double-blind trial in 21 Chinese ICUs
 - Terlipressin 20-160 mcg/hr vs. NE 4-30 mcg/min
 - Target enrollment: 1100
 - Trial stopped after 50% enrollment due to futility
 - No difference in 28 day mortality (40% vs. 38%)
 - More adverse effects in terlipressin group (30% vs. 12%)
 - Primarily digital ischemia

Selepressin

- Selective V1a agonist
- Animal data demonstrates superiority over AVP and NE
 - Improved hemodynamic stability
 - Reduced lung edema and cumulative fluid balance
 - Preserved renal function
 - Attenuated coagulation disorders
 - Decreased systemic inflammation
 - May decrease vascular leakage
 - Improved survival

Selepressin in Early Septic Shock

- Phase II dose-finding study
 - Multicenter, randomized, double-blind, placebocontrolled; N=52
 - Patients with early septic shock randomized to 1 of 3 doses of selepressin or placebo
 - 3.75 ng/kg/min arm stopped due to safety concerns→N=50 patients in final analysis
 - Open-label NE to maintain MAP ≥ 60
- Primary endpoints: stabilization of MAP and cumulative NE doses

Russell, JA, et al. Selepressin, a novel selective vasopressin V1a agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Critical Care (2017) 21:213

Results

	Selepressin 2.5 ng/kg/min (N=19)	Selepressin 1.25 ng/kg/min (N=10)	Placebo (N=21)
NE-free at Hour 12	50%	0%	0%
NE-free at Hour 24	70%	10%	20%
NE-free at Hour 48	70%	60%	40%
Cumulative NE dose at day 7 (mcg/kg)	249	659	761
Alive and free of mechanical ventilation at day 7	54%	31%	23%

- Selepressin 2.5 ng/kg/min resulted in faster shock reversal and lower cumulative NE doses
- No difference in ICU or hospital LOS or 28 day mortality
- Adverse effects similar

Russell, JA, et al. Selepressin, a novel selective vasopressin V1a agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Critical Care (2017) 21:213

SEPSIS-ACT

• Adaptive Phase IIb/III clinical trial of selepressin for septic shock

28

- Multicenter, randomized, blinded, placebo-controlled
- Evaluating up to 4 dosing strategies (1.7-5 ng/kg/min)
- Primary outcome: Pressor and ventilator-free days
- Target enrollment: 1800 patients
- Study terminated after 868 patients enrolled due to futility

Unanswered Questions

- Could alternate dosing strategies of terlipressin be beneficial?
- Results of SEPSIS-ACT?

Summary

- Vasopressin and its analogs (VA) are effective vasopressors and are catecholamine-sparing
- Low-dose vasopressin appears to have fewer ADEs than other agents
- VA may decrease the incidence of AKI in septic shock
- Selective V1a agonism may provide additional benefit but more data is needed

AKI = acute kidney injury

Nedel, WL, et al. Renal Outcomes of Vasopressin and Its Analogs in Distributive Shock: A Systematic Review and Meta-Analysis of Randomized Trials. Crit Care Med 2018. DOI: 10.1097/CCM.000000000003471.

Conclusions

- Available evidence suggests strategies to decrease catecholamine exposure are necessary
- Many unanswered questions remain
 - What is the ideal vasopressor "cocktail"?
 - Does timing of vasopressor initiation matter?
 - Should vasopressor studies use more clinically meaningful endpoints?
 - Days alive and free vs. 28 day mortality

Learning Assessment Questions

- 1. Clinical evidence supports the use of angiotensin II for the following:
 - A. Decreasing mortality in patients with septic shock
 - B. Increasing blood pressure in patients with vasodilatory shock
 - C. Increasing blood pressure in patients with cardiogenic shock
 - D. Improving organ dysfunction (i.e. decreasing SOFA score) in patients with septic shock

- 1. Clinical evidence supports the use of angiotensin II for the following:
 - A. Decreasing mortality in patients with septic shock
 - B. Increasing blood pressure in patients with vasodilatory shock
 - C. Increasing blood pressure in patients with cardiogenic shock
 - D. Improving organ dysfunction (i.e. decreasing SOFA score) in patients with septic shock
 - Answer B is correct. The ATHOS-3 trial demonstrated a statistically significant increase in mean arterial pressure (MAP) within 3 hours in patients with vasodilatory shock.

- 2. Which of the following are potential advantages for the use of selepressin in patients with septic shock?
 - A. Decrease in cumulative fluid balance
 - B. Decreased time to resolution of shock
 - C. Avoidance of procoagulant effects of V2 receptor agonism
 - D. Decreased time on mechanical ventilation
 - E. All of the above

- 2. Which of the following are potential advantages for the use of selepressin in patients with septic shock?
 - A. Decrease in cumulative fluid balance
 - B. Decreased time to resolution of shock
 - C. Avoidance of pro-coagulant effects of V2 receptor agonism
 - D. Decreased time on mechanical ventilation
 - E. All of the above
 - Answer E is correct. Preliminary animal and human studies of selepressin have demonstrated all of the above effects. Larger studies are needed to confirm these effects.

Thank you!

36