Hypothermia Protocols: A Focus on Bedside Application
Jennifer Gass, PharmD, MS, BCPS
Cardiology Critical Care Pharmacy Specialist II
Memorial Hermann - TMC

Objectives
- Describe the benefits of induced hypothermia following cardiac arrest
- Discuss key logistical items that must be considered prior to implementation of hypothermia protocols in clinical practice

Historical Perspective
- Hippocrates - 400 BC
 - Temple Fay - 1917
 - Bigelow & McCreary - 1953
 - Resnoff & Gibert - 1955
 - Benson - 1959
 - Baron Dominique Larrey - 1812

Therapeutic Hypothermia Today
- New England Journal of Medicine - 2002
 - 2 articles demonstrating improved outcomes in patients receiving therapeutic hypothermia
- Advisory Statement - 2003
 - American Heart Association (AHA) & International Liaison Committee on Resuscitation (ILCOR)
- ACLS Guidelines - 2010
 - Class I, LOE B
 - Class IIb, LOE B

The New England Journal of Medicine

Benefits of Therapeutic Hypothermia
- Multi-center, blinded, randomized controlled trial
- Hypothermia for 24 hours (32°C to 34°C) versus normothermia
- Witnessed arrest, VfB or pulseless VTach arrest, unresponsive after ROSC
- Primary end-point favorable neurologic outcome within 6 months of arrest
Benefits of Therapeutic Hypothermia

- Randomized controlled trial
- Hypothermia for 12 hours (33°C) versus normothermia
- Vfib arrest unresponsive after ROSC
- Primary end-point: survival to hospital discharge to home or SNF

Achieving Target Temperatures

- 3 Phases
 - Re-warming
 - Maintenance
 - Brady-gone
 - ROSC

BEDSIDE CONSIDERATIONS
Achieving Target Temperatures

<table>
<thead>
<tr>
<th>Invasive Cooling</th>
<th>Non-Invasive Cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Endovascular catheters</td>
<td>• Immersion devices</td>
</tr>
<tr>
<td>• ECMO</td>
<td>• Cooling pad / blanket devices</td>
</tr>
<tr>
<td>• Cold saline / fluid infusion</td>
<td>• Ice packs</td>
</tr>
</tbody>
</table>

Benefits:
• Faster cooling
• Improved temperature control

Risks:
• Procedure needed for placement
• Sore or complete cooling
• May be cumbersome

Depth and Duration of Hypothermia

- Duration of hypothermia
 - Generally accepted 12-24 hours

- Temperature goal
 - Generally accepted range from 32°C to 34°C
 - Side effects increase with the decrease in temperature
 - Targeted Temperature Management at 33°C versus 36°C After Cardiac Arrest

Depth and Duration of Hypothermia

- Randomized controlled trial
 - Hypothermia for 28 hours at 33°C versus 36°C
 - Out-of-hospital arrest unresponsive after ROSC with 20 minutes sustained ROSC
 - Primary end point: all-cause mortality through the end of the trial

Depth and Duration of Hypothermia

<table>
<thead>
<tr>
<th>Primary outcomes</th>
<th>33°C Group</th>
<th>36°C Group</th>
<th>Hazard Ratio in Died vs Survived</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome: death of trial</td>
<td>219 (17%)</td>
<td>221 (18%)</td>
<td>1.06 (0.91-1.25)</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Secondary outcomes:
- Neurological deficit at 90 days
 - 106 (12.1%) vs 106 (12.1%) (P = 0.88)
- Partial neurological deficit at 90 days
 - 104 (12.1%) vs 104 (12.1%) (P = 0.88)
- Derived 100 days
 - 226 (17.9%) vs 226 (17.9%) (P = 0.65)
Maintaining Target Temperatures

- Shivering
 - Bedside Shivering Assessment Scale
 0 None: no shivering noted on palpation of the masseter
 neck or chest wall
 1 Mild: shivering localized to the neck and/or thorax
 2 Moderate: shivering involves gross movement of the
 upper extremities
 3 Severe: shivering involves gross movements of the
 trunk and upper and lower extremities

- Pharmacologic agents
 - Paralytics
 - Continuous infusion vs bolus dosing
 - Sedation & Analgesia
 - Meperidine
 - Acetaminophen

Assessment Question

- What is the primary benefit of induced hypothermia after cardiac arrest?
 a. Improved neurological outcome
 b. Reduced myocardial damage
 c. Decreased incidence of acute kidney failure
 d. Avoidance of shock