Refractory Status Epilepticus in Children: What are the Options?

Weng Man Lam, PharmD, BCPS, BCPPS
PICU Clinical Pharmacy Specialist
Memorial Hermann Texas Medical Center
November 11, 2017
Objectives

1. Describe the initial therapeutic management of status epilepticus in pediatrics.

1. Analyze current literature surrounding the use of available therapies for refractory status epileptics in pediatrics.
Definitions

Brief Seizure

< 5 minutes

Prolonged Seizure

5 – 30 minutes

Status Epilepticus

> 30 minutes of continuous epileptic seizure activity
Recurrent seizure activity without recovery between seizures

Refractory Status Epilepticus

Persistence of clinical or electrographic seizures after benzodiazepine + ONE antiepileptic drug (AED)

Epidemiology

Status Epilepticus (SE)

- Most common neurological emergency in childhood
- Incidence between 17-23 per 100,000 children per year

Common Etiologies

Neonates:
- Encephalopathy
- Infection
- Stroke/Hemorrhage
- Congenital Malformation
- Metabolic Disturbances

Children:
- Infection
- Fever
- Congenital Malformation
- Metabolic Disturbances

2016 American Epilepsy Society
Convulsive Status Epilepticus

0 - 5 minutes
Stabilization Phase
- Stabilize patient, vital signs, provide oxygenation, initial ECG, check blood glucose, attempt IV access, collect electrolytes

5 - 20 minutes
Initial Therapy Phase
- First line: IM midazolam, IV lorazepam, IV diazepam
- Second line: IV phenobarbital, rectal diazepam, intranasal midazolam, buccal midazolam

20 - 40 minutes
Second Therapy Phase
- Choose 1 and give as a single dose: IV fosphenytoin, IV valproic acid, IV levetiracetam
- If the above is unavailable, give IV phenobarbital

40 - 60 minutes
Third Therapy Phase
- No clear evidence to guide therapy: repeat second line or anesthetic doses of midazolam, pentobarbital, or propofol with continuous EEG monitoring

30% of patients with SE will fail conventional therapy and progress into refractory status epilepticus

Internalization of \(\text{GABA}_A \) Receptors

Consequences of RSE

Metabolic acidosis
Cerebral necrosis
Hypoxia
Hyper/Hypoglycemia
Increased Intracranial Pressure
Respiratory acidosis
Leukocytosis
Tachycardia
Hyperpyrexia
Hyper/Hypotension

Morbidity and Mortality

• In a series of 193 children with refractory SE, 26% had seizures lasting longer than 1 hour
 – Neurologic sequelae:
 • 29% of infants < 1 year
 • 11% of children 1-3 years
 • 6% of children > 3 years

• Children with SE have an overall mortality rate of 0-3%

 In a retrospective series of 22 children with refractory SE, mortality was 32%

Goals of Therapy

- Achieve burst suppression to induce a therapeutic coma
- Recommend to continue anesthetic infusion for 24-48 hours after seizures are terminated, then gradually discontinue

What are the Options in Pediatrics?

- Pentobarbital
- Midazolam
- Propofol
- Ketamine
- Topiramate
- Lidocaine
- Lacosamide
- Levetiracetam
- Valproic Acid
Mechanism of Action for GABAnergic Agents

Continuous Infusion of Pentobarbital

<table>
<thead>
<tr>
<th>Population</th>
<th>30 patients (mean age: 6.5 years, range: 0.03-18.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosage</td>
<td>Loading Dose: 5.4 mg + 2.8 mg/kg</td>
</tr>
<tr>
<td></td>
<td>Continuous infusion: 1.1 ± 0.4 mg/kg/hour (range: 0.3 – 2)</td>
</tr>
<tr>
<td></td>
<td>Mean duration: 166 ± 112 hours (6.9 days)</td>
</tr>
<tr>
<td>Neurologic Outcome</td>
<td>Mean time to achieve burst suppression: 22.6 ± 17.5 hours</td>
</tr>
<tr>
<td></td>
<td>Sustain burst suppression without relapse: 33% (n=10)</td>
</tr>
<tr>
<td>Therapy Tolerance</td>
<td>Hemodynamic support: 93.3% (n=28)</td>
</tr>
<tr>
<td></td>
<td>Acquired infections: 66% (n=20)</td>
</tr>
<tr>
<td></td>
<td>Pancreatitis: 10% (n=3)</td>
</tr>
<tr>
<td></td>
<td>Metabolic acidosis: 10% (n=3)</td>
</tr>
<tr>
<td>Negative Outcome</td>
<td>Death: 3 patients (10%)</td>
</tr>
<tr>
<td></td>
<td>Children < 5 years experienced more negative outcomes (62%)</td>
</tr>
</tbody>
</table>

Continuous Infusion of High-dose Midazolam

Morrison, et al. 2006.

<table>
<thead>
<tr>
<th>Table Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>17 patients (mean age: 4.7 years)</td>
</tr>
<tr>
<td>Neurologic Outcomes</td>
<td>15 patients (88%) controlled in mean of 15 minutes with midazolam</td>
</tr>
</tbody>
</table>
| Therapy Tolerance | Median peak rate for seizure control was 0.24 mg/kg/hr
Mean arterial BP was 67 ± 19 mmHg *prior to therapy*
Mean arterial BP was 65 ± 10 mmHg at *peak of infusion* (*p = 0.6*) |
| Negative Outcome | Breakthrough seizures occurred in 8 episodes (47%)
2 patients failed to achieve seizure control
3 patients expired due to underlying acute neurological pathology |
Continuous Infusion of High-dose Midazolam

RSE
- Bolus 0.5 mg/kg
- Infusion 2 mcg/kg/min (0.12 mg/kg/hr)

5 min
- Bolus 0.5 mg/kg
- Increase infusion to 4 mcg/kg/min (0.24 mg/kg/hr)

5 min
- Bolus 0.1 mg/kg
- Increase infusion by 4 mcg/kg/min (0.48 mg/kg/hr)
 - Repeat PRN to attainment of 24 mcg/kg/min (1.44 mg/kg/hr)

5 min
- Initiate thiopental
 Bolus 4 mg/kg + Infusion 2 mg/kg/hr

Propofol/Thiopental

<table>
<thead>
<tr>
<th></th>
<th>Propofol</th>
<th>Thiopental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosage</td>
<td>Bolus: 1-2 mg/kg</td>
<td>Loading dose: blood level of 20 mg/mL after 6 hours, then continuous infusion</td>
</tr>
<tr>
<td></td>
<td>Continuous infusion: 1-2 mg/kg/hour</td>
<td></td>
</tr>
<tr>
<td>Episodes of RSE</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>Seizure cessation</td>
<td>14/22 (64%)</td>
<td>11/2- (55%)</td>
</tr>
<tr>
<td>Mean duration</td>
<td>2.3 (0.4-11) days</td>
<td>8.6 (2 – 33) days</td>
</tr>
<tr>
<td>(range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>2 (not related to propofol)</td>
<td>2 (related to thiopental)</td>
</tr>
</tbody>
</table>

Mobilization of NDMA and AMPA Receptors

Synaptic membrane
Mechanism of Action for Ketamine

Potentiation of GABA

Image from: http://pedsinreview.aappublications.org/content/19/10/342

<table>
<thead>
<tr>
<th></th>
<th>Pentobarbital (n = 630)</th>
<th>Pentobarbital and Ketamine (n = 48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>3 (0-10)</td>
<td>7 (2-11)</td>
</tr>
<tr>
<td>Treatment Details</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First day of pentobarbital</td>
<td>2 (1-4)</td>
<td>2 (0-4)</td>
</tr>
<tr>
<td>Days of pentobarbital</td>
<td>5 (3-9)</td>
<td>14 (8-30)</td>
</tr>
<tr>
<td>First day of ketamine</td>
<td>--</td>
<td>11 (5-20)</td>
</tr>
<tr>
<td>Days of ketamine</td>
<td>--</td>
<td>7 (4-9)</td>
</tr>
<tr>
<td>Any midazolam treatment</td>
<td>610 (97%)</td>
<td>47 (98%)</td>
</tr>
<tr>
<td>First day of midazolam</td>
<td>0 (0-2)</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Days of midazolam</td>
<td>6 (3-12)</td>
<td>16 (7-32)</td>
</tr>
</tbody>
</table>

Median (IQR)

<table>
<thead>
<tr>
<th></th>
<th>Pentobarbital (n = 630)</th>
<th>Pentobarbital and Ketamine (n = 48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>3 (0-10)</td>
<td>7 (2-11)</td>
</tr>
<tr>
<td>Treatment Details:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First day of pentobarbital</td>
<td>2 (1-4)</td>
<td>2 (0-4)</td>
</tr>
<tr>
<td>Days of pentobarbital</td>
<td>5 (3-9)</td>
<td>14 (8-30)</td>
</tr>
<tr>
<td>First day of ketamine</td>
<td>--</td>
<td>11 (5-20)</td>
</tr>
<tr>
<td>Days of ketamine</td>
<td>--</td>
<td>7 (4-9)</td>
</tr>
<tr>
<td>Any midazolam treatment</td>
<td>610 (97%)</td>
<td>47 (98%)</td>
</tr>
<tr>
<td>First day of midazolam</td>
<td>0 (0-2)</td>
<td>0 (0-1)</td>
</tr>
<tr>
<td>Days of midazolam</td>
<td>6 (3-12)</td>
<td>16 (7-32)</td>
</tr>
</tbody>
</table>

Median (IQR)

<table>
<thead>
<tr>
<th></th>
<th>Pentobarbital (n = 630)</th>
<th>Pentobarbital and Ketamine (n = 48)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG days*</td>
<td>10 (6-12)</td>
<td>24 (17-43)</td>
</tr>
<tr>
<td>Pressor days*</td>
<td>4 (1-8)</td>
<td>8 (4-15)</td>
</tr>
<tr>
<td>Ventilator days*</td>
<td>14 (9-23)</td>
<td>30 (20-56)</td>
</tr>
<tr>
<td>ICU days*</td>
<td>17 (9-28)</td>
<td>29 (20-56)</td>
</tr>
<tr>
<td>Length of stay*</td>
<td>30 (18-52)</td>
<td>51 (30-93)</td>
</tr>
<tr>
<td>Died in Hospital*</td>
<td>108 (17%)</td>
<td>14 (29%)</td>
</tr>
</tbody>
</table>

Note: *p value << 0.001
Median (IQR)
Mechanism of Action for Lacosamide

Potentiation of GABA

Antagonize AMPA receptors

Inhibits repetitive neuronal firing by enhancing the slow inactivation of sodium channels
Lacosamide for Status Epilepticus

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective</td>
</tr>
<tr>
<td>Method</td>
</tr>
</tbody>
</table>
| **Result** | Nine children (mean age: 5.7 years)
 | Mean Loading dose: 8.7 mg/kg (3.3 – 10 mg/kg)
 | Efficacious: 7 out of 9 patients (77.8%)
 | Seizure free: 4 out of 9 patients (44.4%) |
| **Conclusion** | Appropriate adjunctive therapy
 | Loading dose 10 mg/kg
 | Total daily dose: 15-20 mg/kg |

Topiramate (TPM)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study Type</th>
<th>Age</th>
<th>No. of ADEs Prior to TPM</th>
<th>Dosage</th>
<th>Time to TPM respond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kahriman M, et al. 2003</td>
<td>Case series (n=3)</td>
<td>4.5 months – 11 years</td>
<td>2-6</td>
<td>2-3 mg/kg/day (max: 5-6 mg/kg/day)</td>
<td>Within 24 hours</td>
</tr>
<tr>
<td>Blumkin L, et al. 2005</td>
<td>Case series (n=2)</td>
<td>5-32 months</td>
<td>3-7</td>
<td>2-5 mg/kg, then 22-25 mg/kg/day, maintenance 10 mg/kg/day</td>
<td>6 days</td>
</tr>
<tr>
<td>Perry MS, et al. 2006</td>
<td>Case series (n=3)</td>
<td>2 months – 6 years</td>
<td>2</td>
<td>10 mg/kg/day x 2 days, then 5 mg/kg/day</td>
<td>12-21 hours</td>
</tr>
</tbody>
</table>
Topiramate (TPM)

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study Type</th>
<th>Age</th>
<th>No. of ADEs Prior to TPM</th>
<th>Dosage</th>
<th>Time to TPM respond</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bragatti JA, et al. 2011</td>
<td>Case report (n=1)</td>
<td>16 years</td>
<td>1</td>
<td>2.5 mg/kg/day</td>
<td>8 hours</td>
</tr>
<tr>
<td>Akyildiz BN, et al. 2011</td>
<td>Prospective observational (n=14)</td>
<td>6 months - 12 years</td>
<td>0-2</td>
<td>5 mg/kg loading dose, then 5 mg/kg/day</td>
<td>2-48 hours</td>
</tr>
<tr>
<td>Shelton CM, et al. 2014</td>
<td>Case series (n=1)</td>
<td>12 years</td>
<td>3</td>
<td>Initial 1.7 mg/kg/day, titrate to 11.4 mg/kg/day</td>
<td>72 hours</td>
</tr>
</tbody>
</table>
Treatment plan: RSE

Refractory Status Epilepticus

Midazolam
Pentobarbital

Propofol in adult

Use of propofol in children is not recommended

Ketamine
Topiramate
Valproic acid
Levetiracetam
Lacosamide
Summary

• Status epilepticus is the most common neurological emergency of childhood.

• **Refractory status epilepticus** is associated with a mortality rate of 32%.

• Treatment strategies and preferences for refractory status epilepticus are not well established.
 – Benzodiazepines and Pentobarbital remain the main cornerstone of treatment
Questions?
Refractory Status Epilepticus in Children: What are the Options?

Weng Man Lam, PharmD, BCPS, BCPPS
PICU Clinical Pharmacy Specialist
Memorial Hermann Texas Medical Center
November 11, 2017